Predicting user attentiveness to electronic notifications

, , , and
US Patent
, (Granted)
Abstract. A database comprises historical information of a user's response to previous notifications. The database is accessed to determine a time at which to provide a (new) notification to the user, utilizing at least: a) current user activity status (e.g., determined from measurement information collected from one or more personal devices and/or user calendar events; b) time/day; and c) context information about the notification (e.g., geo-location, indoors/outdoors) including notification type (e.g., calendar entry, email, IM). The user gets the notification via a portable device at the determined time. A machine learning model can select the determined time by discriminating features of the previous notifications for which the user immediately attended versus those that were deferred and/or ignored. Content of the notification can also be altered in view of such discriminating features so as to increase a likelihood the user will immediately attend to the provided notification.